Structure-based approach to the prediction of disulfide bonds in proteins.
نویسندگان
چکیده
Protein engineering remains an area of growing importance in pharmaceutical and biotechnology research. Stabilization of a folded protein conformation is a frequent goal in projects that deal with affinity optimization, enzyme design, protein construct design, and reducing the size of functional proteins. Indeed, it can be desirable to assess and improve protein stability in order to avoid liabilities such as aggregation, degradation, and immunogenic response that may arise during development. One way to stabilize a protein is through the introduction of disulfide bonds. Here, we describe a method to predict pairs of protein residues that can be mutated to form a disulfide bond. We combine a physics-based approach that incorporates implicit solvent molecular mechanics with a knowledge-based approach. We first assign relative weights to the terms that comprise our scoring function using a genetic algorithm applied to a set of 75 wild-type structures that each contains a disulfide bond. The method is then tested on a separate set of 13 engineered proteins comprising 15 artificial stabilizing disulfides introduced via site-directed mutagenesis. We find that the native disulfide in the wild-type proteins is scored well, on average (within the top 6% of the reasonable pairs of residues that could form a disulfide bond) while 6 out of the 15 artificial stabilizing disulfides scored within the top 13% of ranked predictions. Overall, this suggests that the physics-based approach presented here can be useful for triaging possible pairs of mutations for disulfide bond formation to improve protein stability.
منابع مشابه
Recombinant Production of a Novel Fusion Protein: Listeriolysin O Fragment Fused to S1 Subunit Of Pertussis Toxin
Background: Some resources have suggested that genetically inactivated pertussis toxoid (PTs) bear a more protective effect than chemically inactivated products. This study aimed to produce new version of PT, by cloning an inactive pertussis toxin S1 subunit (PTS1) in a fusion form with N-terminal half of the listeriolysin O (LLO) pore-forming toxin. Methods: Deposited pdb structure file of the...
متن کاملSynthesis of Zinc Dimethyldithiocarbamate by Reductive Disulfide Bond Cleavage of Tetramethylthiuram Disulfide in Presence of Zn2+
The zinc(II) complex [Zn2(dmdtc)2(μ-dmdtc)2] has been synthesized directly from thiram ligand, containing a disulfide bond {dmdtc = N,N-dimethyldithiocarbamate; thiram = N,N-tetramethylthiuram disulfide}, and characterized by elemental analysis and spectroscopic methods. Surprisingly thiram, undergoes a reductive disulfide bond scission upon reaction with Zn2+ in methanolic media to give the [Z...
متن کاملPredicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure
MOTIVATION Disulfide bonds are primary covalent crosslinks between two cysteine residues in proteins that play critical roles in stabilizing the protein structures and are commonly found in extracy-toplasmatic or secreted proteins. In protein folding prediction, the localization of disulfide bonds can greatly reduce the search in conformational space. Therefore, there is a great need to develop...
متن کاملAccurate disulfide-bonding network predictions improve ab initio structure prediction of cysteine-rich proteins
MOTIVATION Cysteine-rich proteins cover many important families in nature but there are currently no methods specifically designed for modeling the structure of these proteins. The accuracy of disulfide connectivity pattern prediction, particularly for the proteins of higher-order connections, e.g., >3 bonds, is too low to effectively assist structure assembly simulations. RESULTS We propose ...
متن کاملInter- and intra-chain disulfide bond prediction based on optimal feature selection.
Protein disulfide bond is formed during post-translational modifications, and has been implicated in various physiological and pathological processes. Proper localization of disulfide bonds also facilitates the prediction of protein three-dimensional (3D) structure. However, it is both time-consuming and labor-intensive using conventional experimental approaches to determine disulfide bonds, es...
متن کاملStructural bioinformatics Accurate disulfide-bonding network predictions improve ab initio structure prediction of cysteine-rich proteins
Motivation: Cysteine-rich proteins cover many important families in nature but there are currently no methods specifically designed for modeling the structure of these proteins. The accuracy of disulfide connectivity pattern prediction, particularly for the proteins of higher-order connections, e.g. >3 bonds, is too low to effectively assist structure assembly simulations. Results: We propose a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Protein engineering, design & selection : PEDS
دوره 27 10 شماره
صفحات -
تاریخ انتشار 2014